Reproduction-Related Sound Production of Grasshoppers Regulated by Internal State and Actual Sensory Environment
نویسندگان
چکیده
The interplay of neural and hormonal mechanisms activated by entero- and extero-receptors biases the selection of actions by decision making neuronal circuits. The reproductive behavior of acoustically communicating grasshoppers, which is regulated by short-term neural and longer-term hormonal mechanisms, has frequently been used to study the cellular and physiological processes that select particular actions from the species-specific repertoire of behaviors. Various grasshoppers communicate with species- and situation-specific songs in order to attract and court mating partners, to signal reproductive readiness, or to fend off competitors. Selection and coordination of type, intensity, and timing of sound signals is mediated by the central complex, a highly structured brain neuropil known to integrate multimodal pre-processed sensory information by a large number of chemical messengers. In addition, reproductive activity including sound production critically depends on maturation, previous mating experience, and oviposition cycles. In this regard, juvenile hormone released from the corpora allata has been identified as a decisive hormonal signal necessary to establish reproductive motivation in grasshopper females. Both regulatory systems, the central complex mediating short-term regulation and the corpora allata mediating longer-term regulation of reproduction-related sound production mutually influence each other's activity in order to generate a coherent state of excitation that promotes or suppresses reproductive behavior in respective appropriate or inappropriate situations. This review summarizes our current knowledge about extrinsic and intrinsic factors that influence grasshopper reproductive motivation, their representation in the nervous system and their integrative processing that mediates the initiation or suppression of reproductive behaviors.
منابع مشابه
Reconstruction of the neural network model of motor control for virtual C.elegans on the basis of actual organism information
Introduction: C. elegans neural network is a good sample for neural networks studies, because its structural details are completely determined. In this study, the virtual neural network of this worm that was proposed by Suzuki et al. for control of movement was reconstructed by adding newly discovered synapses for each of these network neurons. These synapses are newly discovered in the actu...
متن کاملAnalysis of motor fan radiated sound and vibration waveform by automatic pattern recognition technique using “Mahalanobis distance”
In recent years, as the weight of IT equipment has been reduced, the demand for motor fans for cooling the interior of electronic equipment is on the rise. Sensory test technique by inspectors is the mainstream for quality inspection of motor fans in the field. This sensory test requires a lot of experience to accurately diagnose differences in subtle sounds (sound pressures) of the fans, and t...
متن کاملSocial facilitation of insect reproduction with motor-driven tactile stimuli.
Tactile stimuli provide animals with important information about the environment, including physical features such as obstacles, and biologically relevant cues related to food, mates, hosts and predators. The antennae, the principal sensory organs of insects, house an array of sensory receptors for olfaction, gustation, audition, nociception, balance, stability, graviception, static electric fi...
متن کاملFuzzy Adaptive Filter for State Estimation of Sound Environment System and Its Application to Psychological Evaluation
The internal physical mechanism of actual sound environment system is often difficult to recognize analytically from the bottom-up viewpoint, and it contains unknown structural characteristics. Furthermore, the observations in the sound environment often contain fuzziness due to several causes. In this paper, a method for estimating the specific signal for sound environment system with unknown ...
متن کاملTesting the Efficiency of Sensory Coding with Optimal Stimulus Ensembles
According to Barlow's seminal "efficient coding hypothesis," the coding strategy of sensory neurons should be matched to the statistics of stimuli that occur in an animal's natural habitat. Using an automatic search technique, we here test this hypothesis and identify stimulus ensembles that sensory neurons are optimized for. Focusing on grasshopper auditory receptor neurons, we find that their...
متن کامل